Sin17 sin3 sin1 sec73 sec87 sec89
Answers
Step-by-step explanation:
(sin1°) (sin3°) (sin5°) (sin7°) … (sin89°)=1/2^n=x
Find n
Answer :
n = 44.5=89/2
Solution :
(sin89°) =cos1°
(sin87°) =cos3°
And so on till 47°
x=(sin1°×cos1°)(sin3°×cos3°)(sin5°×cos5°)……sin45°
Multiple and divide every bracket with 2
= (1/2 ^22)(sin45°)(sin2°)(sin6°)(sin10°)……(sin82°)(sin86°)
Sin45°=1/2^.5 (sin@)=(cos90°-@)
=(1/2 ^22.5)(cos4°)(cos8°)(cos12°)……(cos84°)(cos88°)
Let,
p=(cos4°)(cos8°)(cos12°)……(cos84°)(cos88°)
And
q=(sin4°)(sin8°)(sin12°)……(sin84°)(sin88°)
So,
p*q=(sin4°×cos4°)(sin8°×cos8°)(sin12°×cos12°)……. (sin88°×cos88°)
Multiple and divide every bracket with 2
=(1/2^22)(sin8°)(sin16°)(sin24°)…(sin88°)(sin96°)…(sin168°)(sin176°)
(sin@) =(sin180°-@)
=(1/2^22)(sin8°)(sin16°)(sin24°)…(sin88°)(sin84°)…(sin12°)(sin4°)
Thus,
p*q=(1/2^22)*q (q! =0)
So,
p=(1/2^22)
x=(1/2^22. 5)*p
=(1/2^22. 5)(1/2^22)
=(1/2^44.5)