Math, asked by sspavan030, 8 months ago

sin18: OHL then cos36°​

Answers

Answered by byaswanth2005
0

Answer:

Hi your answer is as follows

Step-by-step explanation:

let θ = 18°

5θ = 90°

2θ+3θ = 90°

2θ = 90 - 3θ

applying sine on both sides,

sin(2θ) = sin (90-3θ)    ------------------------ (sin 90 - θ = cosθ)

sin(2θ) = -cos3θ           -------------(sin2θ = 2sinθcosθ) ; (cos3θ = 4cos^3 - 3cos)

2sinθcosθ = -4cos^3 + 3cos       ==========> (minus (-) is outside)

2sinθ = -4cos^2 + 3

2 sinθ = -4 + 4sin^2θ + 3          -------------------------(cos^2 = 1-sin^2)

4 sin^2 -2sin -1 =0

on using shridaracharya's formula,          -------------------- [\frac{-b+-\sqrt{b^2 - 4ac} }{2a}]

θ = \frac{\sqrt{5} -1}{4}

\frac{-1-\sqrt{5} }{4} is rejected as angles in 1st quadrant are positive

sin 18° = \frac{\sqrt{5} -1}{4}

==========================================================

As θ  = 18°

we can write cos(36°) as cos 2(18°)

which is in the form of cos 2θ  = 1-sin^2θ

Therefore,

cos2θ  =                           ---------------- (cos2θ = 1-2sin^2)

1- 2*[\frac{\sqrt{5}-1 }{4} ]^2\\= \frac{\sqrt{5}+1}{4}    

cos 36° = \frac{\sqrt{5} +1}{4}

Hope it helps,

Mark as brainliest if you are satisfied with my answer

Similar questions