Math, asked by gkeerthi0227, 10 months ago

sin² 135° + sec²150°+tan²120°​

Answers

Answered by Anonymous
21

  \huge{ \mathtt{ \fbox{Answer :)}}}

 \star 23/6

  \huge{ \mathtt{ \fbox{ Explaination :)}}}

 \sf \hookrightarrow {(Sin)}^{2} 135 +  {(Sec)}^{2} 150 +  {(Tan)}^{2} (120) \\  \\  \sf \hookrightarrow</p><p></p><p> {(Sin)}^{2}(90 + 45) +  {(Sec)}^{2}(90 + 60) + {(Tan)}^{2}(90 + 30) \\  \\  \sf \hookrightarrow</p><p></p><p> {Cos}^{2} 45 -  {(Cosec)}^{2} (60) -  {(Cot)}^{2} (30)</p><p> \\  \\  \sf \hookrightarrow</p><p> { (\frac{1}{\sqrt{2} }) }^{2} - {( \frac{2}{ \sqrt{3} }) }^{2} - {( \sqrt{3} )}^{2}  \\  \\  \sf \hookrightarrow \frac{1}{2}   -  \frac{4}{3}  - 3 \\  \\  \sf \hookrightarrow \frac{3 - 8 - 18}{6} </p><p> \\  \\  \sf \hookrightarrow \frac{3 - 26}{12}  \\  \\  \sf \hookrightarrow -\frac{23}{6}

Hence , the required value is 23/6

______________ Keep Smiling ☺

Similar questions