Math, asked by sujal891666, 8 months ago

sin²(2π/7)+sin² (3π/14)+sin²(11π/14)+sin²(5π/7)=2​

Answers

Answered by Sid3412
3

Answer:

Step-by-step explanation:sin^2(2pi/7)+sin^2(5pi/7)

=sin^2(2pi/7)+sin^2(2pi/7)   (sin(A)=sin(pi-A))

Then,

sin^2(3pi/14)+sin^2(11pi/14)

=sin^2(3pi/14)+sin^2(3pi/14)  sin(A)=sin(pi-A)

Then,

2[sin^2(2pi/7)+sin^2(3pi/14)]

=2[sin^2(2pi/7)+cos^2(2pi/7)]       sin(B)=cos(pi/2-B)

=2

Answered by Anonymous
15

 {sin}^{2} ( \frac{2\pi}{7} ) +  {sin}^{2} ( \frac{3\pi}{14} ) +  {sin}^{2} (\frac{11\pi}{14}  ) +  {sin}^{2} ( \frac{5\pi}{7} ) = 2 \\

Solution :-

Let's take LHS →

 \longrightarrow {sin}^{2} ( \frac{2\pi}{7} ) +  {sin}^{2} ( \frac{3\pi}{14} ) +  {sin}^{2} (\frac{11\pi}{14}  ) +  {sin}^{2} ( \frac{5\pi}{7} ) \\

So, we can write -

  •  \frac{2\pi}{7} \:   =  \: (\pi -  \frac{5\pi}{7} )  \\
  •  \frac{3\pi}{14}  = (\pi -  \frac{11\pi}{14} ) \\

So,

\longrightarrow {sin}^{2} ( \frac{2\pi}{7} ) +  {sin}^{2} ( \frac{3\pi}{14} ) +  {sin}^{2} (\frac{11\pi}{14}  ) +  {sin}^{2} ( \frac{5\pi}{7} ) \\

\longrightarrow {sin}^{2} ( \pi -  \frac{5\pi}{7}  ) +  {sin}^{2} ( \pi -  \frac{11\pi}{14}  ) +  {sin}^{2} (\frac{11\pi}{14}  ) +  {sin}^{2} ( \frac{5\pi}{7} ) \\

We know that :-

  • sin(\pi - a) = sin \: a
  • {sin}^{2} ( \frac{5\pi}{7} )  + {sin}^{2} (\frac{11\pi}{14}  ) + {sin}^{2} (\frac{11\pi}{14}  ) +  {sin}^{2} ( \frac{5\pi}{7} )  \\

\longrightarrow 2{sin}^{2} (\frac{11\pi}{14}  ) +  2{sin}^{2} ( \frac{5\pi}{7} )   \\

\longrightarrow 2({sin}^{2} (\frac{11\pi}{14}  ) +  {sin}^{2} ( \frac{5\pi}{7} ))

Now :-

  •  \frac{5\pi}{7}  =  \frac{\pi}{2}  -  \frac{11\pi}{14}  \\

We know that :-

  • sin \: ( \frac{\pi}{2}  - a) = cos \: a

\longrightarrow 2({sin}^{2} (\frac{11\pi}{14}  ) +  {sin}^{2} (  \frac{\pi}{2} -  \frac{11\pi}{14}   ))

\longrightarrow 2({sin}^{2} (\frac{11\pi}{14}  ) +  {cos}^{2} ( \frac{11\pi}{14} ))

Using the identity :-

  •  {sin}^{2} a +  {cos}^{2} a = 1

\longrightarrow 2 \times 1

\longrightarrow 2

R.H.S

Hence proved !!

Similar questions