sin2^20+sin2^70+cos48cosec42+sin40sec50
Answers
Answered by
1
sin²20+cos²20+cos 48sec 48+sin 40/cos50
(since cos²20=sin²70; cosec 42=sec 48;
sec 50=1/cos 50)
=1+1+sin40/sin40 (since sin²20+cos²20=1;sin40=cos 50)
=1+1+1=3
Step-by-step explanation:
hopefully it helps
Answered by
119
Question :
Find the Value of sin²20° + sin²70° + cos48°cosec42° + sin40°sec50°
AnswEr :
First of all let's know some facts related to complementary angles of trigonometry.
- sin θ = cos (90° - θ)
- cos θ = sin (90° - θ)
- cosec θ = sec (90° - θ)
- sec θ = cosec (90° - θ)
- tan θ = cot (90° - θ)
- cot θ = tan (90° - θ)
• Let's Head to the Question Now :
⇒ sin²20° + sin²70° + cos48°cosec42° + sin40°sec50°
⇒ sin²20° + sin²(90° - 20°) + cos48°cosec(90° - 48°) + sin40°sec(90° - 40°)
- Using the Above Values
⇒ sin²20° + cos²20° + cos48°sec48° + sin40°cosec40°
- sec θ = 1 / cos θ
- cosec θ = 1 / sin θ
- (sin² θ + cos² θ) = 1
⇒ (sin²20° + cos²20°) + cos48°×1/cos48° + sin40°×1/sin40°
⇒ 1 + 1 + 1
⇒ 3
჻ Therefore, Value will be Equal to 3.
Similar questions