Math, asked by tammnah, 1 year ago

sin2 25+sin2+65+√3(tan 5 tan 15 tan 30 tan 75tan 85

Attachments:

Answers

Answered by Ireallydontknow
48
Sin²25°+sin²65°+√3(tan5°tan15°tan30°tan75°tan85°)
=sin²25°+sin²(90°-25°)+√3{tan5°tan15°×(1/√3)×tan(90°-15°)tan(90°-5°)}
=sin²25°+cos²25°+√3×1/√3(tan5°tan15°cot15°cot5°)
=1+1
=2 Ans.

tammnah: thanks It works
Ireallydontknow: ur welcome :)
tammnah: bt the u again see these question
Ireallydontknow: ??
tammnah: bczz its not a degree related questions
Ireallydontknow: the answer will be same.
tammnah: plz try again
Ireallydontknow: see trigonometric functions have no change if we associate degree to a number .. for eg. tan45 and tan45° is same
tammnah: ok thanks to understand me
Ireallydontknow: no problem
Answered by harendrachoubay
10

\sin^225+\sin^265+\sqrt{3}(\tan 5\tan 15\tan 30\ tan75\tan 85)=2

Step-by-step explanation:

We have,

\sin^225+\sin^265+\sqrt{3}(\tan 5\tan 15\tan 30\ tan75\tan 85)

To find,\sin^225+\sin^265+\sqrt{3}(\tan 5\tan 15\tan 30\ tan75\tan 85)=?

\sin^225+\sin^265+\sqrt{3}(\tan 5\tan 15\tan 30\ tan75\tan 85)

=\sin^225+\sin^2(90-25)+\sqrt{3}(\tan 5\tan 15\tan 30\tan(90-15)\tan (90-5))

Using trigonometric identity,

\sin(90-A)=\cos A and \tan(90-A)=\cot A

=\sin^225+\cos^2 25+\sqrt{3}(\tan 5\tan 15\tan 30\cot 15\cot 5)

=1+\sqrt{3}((\tan 5.\cot 5).(\tan 15.\cot 15)\tan 30)

Using trigonometric identity,

\sin^2A+\cos^2 A=1

=1+\sqrt{3}((1).(1)\tan 30)

Using trigonometric identity,

\tan A.\cot A=1

=1+\sqrt{3}.\tan 30

=1+\sqrt{3}.\dfrac{1}{\sqrt{3}}

= 1 + 1

= 2

Hence, \sin^225+\sin^265+\sqrt{3}(\tan 5\tan 15\tan 30\ tan75\tan 85)=2

Similar questions