Math, asked by BrainlyHelper, 1 year ago

sin²(2x + 5).dx
Integrate the function

Answers

Answered by rohitkumargupta
14
HELLOD EAR,

Given function is intgral of sin²(2x+5).dx

NOW, \sf{\Rightarrow\int{\frac{1-cos(4x+ <br />10)}{2}}\,dx}

\sf{\Rightarrow1/2[\int{1}\,dx-\int{cos(4x+ <br />10)}\,dx]}

\sf{\Rightarrow x/2 - 1/2(\frac{sin(4x+10)}{4})}

\sf{\Rightarrow \frac{1}{2}x-\frac{1}{8}sin(5x+10)+ C}

I HOPE ITS HELP YOU DEAR,
THANKS
Answered by InesWalston
15

Solution-

Given,

f(x)=\sin^2 (2x+5)

We know that,

\cos 2x=1-2sin^2 x

sin^2 x=\frac{1-\cos 2x}{2}

Now,

\int f(x).dx

=\int \sin^2 (2x+5).dx

=\int \frac{1-\cos(4x+10)}{2}.dx

=\frac{1}{2}[\int dx-\int \cos(4x+10).dx]

=\frac{1}{2}[x-\frac{1}{4}\sin(4x+10)+c]

=\frac{1}{2}x-\frac{1}{8}\sin(4x+10)+c


Similar questions