Math, asked by omniking25, 1 year ago

sin²π/6+cos²π/3-tan²π/4-1/2

Answers

Answered by Anonymous
4
hey, mate here is ur Ans
sinπ/6=1/2
cosπ/3=1/2
Tan (π/4)=1/
so,.

(1/2)²+(1/2)²-(1/)²=-(1/2)
1/4+1/4-1
1/2-1
-1/2
hence proved.

omniking25: im following yu
omniking25: what
omniking25: i just posted a new que plz help
omniking25: you prove d that que
omniking25: 3/2
Answered by hemanthkumar76
4

\huge\bf\colorbox{aqua}{\red{Answer}}

 { \sin }^{2}  \frac{\pi}{6}  +  { \cos }^{2}   \frac{\pi}{3}  -  {tan}^{2}  \frac{\pi}{4}  =  -  \frac{1}{2}

\huge\bf\colorbox{aqua}{\red{Formula}}

F1) sin 30° = cos 60° = \frac {1}{2}

F2) tan 45° = 1

\huge\bf\colorbox{aqua}{\red{Explanation}}

First we take LHS side

LHS:-

In trigonometry the value of π is 180°

 \frac{\pi}{6}  =  \frac{ \cancel{180} \:  {}^{30} }{ \cancel{6}}  = 30 \degree

 \frac{\pi}{3}  =  \frac{ \cancel{180} \:  {}^{60} }{ \cancel{3}}  = 60 \degree

 \frac{\pi}{4}  =  \frac{ \cancel{180} \:  {}^{45} }{ \cancel{4}}  = 45 \degree

 { \sin }^{2}  \frac{\pi}{6}  +  { \cos }^{2}   \frac{\pi}{3}  -  {tan}^{2}  \frac{\pi}{4}  =   { \sin }^{2}  30°  +  { \cos }^{2}  60°  -  {tan}^{2}  45°

 =  { (\frac{1}{2}) }^{2}  + { (\frac{1}{2}) }^{2}  -   {1}^{2}

 =  \frac{1}{4}  +  \frac{1}{4}  - 1

 =  \frac{1}{2}  - 1

 =  \frac{1 - 2}{2}

 =  -  \frac{1}{2}  = RHS

\therefore{\underline{\underline{LHS=RHS}}}

 \implies { \sin }^{2}  \frac{\pi}{6}  +  { \cos }^{2}   \frac{\pi}{3}  -  {tan}^{2}  \frac{\pi}{4}  =  -  \frac{1}{2}

Similar questions