Math, asked by shaqiazkhan883, 19 days ago

sin²π/6:sin²π/4:sin²π/3:sin²π/2=1:2:3:4

Answers

Answered by chandan454380
1

Answer:

the proof is step by step explained below

Step-by-step explanation:

Taking left hand side(LHS) only and solving,

 \sin^{2} \frac{\pi}{6} : \sin^{2} \frac{\pi}{4} : \sin^{2} \frac{\pi}{3} : \sin^{2} \frac{\pi}{2}

Now as we know that

 \sin( {30}^{o} )  =  \frac{1}{2}  \\  {30}^{o}  \:  in \: radians \: is \:  \frac{\pi}{6}  \\  \sin( \frac{\pi}{6} )  =  \frac{1}{2}

To convert degree into radians this formula is used

  \: degree \times  \frac{\pi}{ {180}^{o} }

 \sin( {45}^{o} )  =  \frac{1}{ \sqrt{2} }  \\  {45}^{o}  \:  in \: radians \: is \:  \frac{\pi}{4}  \\  \sin( \frac{\pi}{4} )  =  \frac{1}{ \sqrt{2} }

 \sin( {60}^{o} )  =  \frac{ \sqrt{3} }{2}  \\  {60}^{o}  \:  in \: radians \: is \:  \frac{\pi}{3}  \\  \sin( \frac{\pi}{3} )  =  \frac{ \sqrt{3} }{2}

 \sin( {90}^{o} )  =  1  \\  {90}^{o}  \:  in \: radians \: is \:  \frac{\pi}{2}  \\  \sin( \frac{\pi}{2} )  =  1

Now applying all the above values in Left hand side equation,

 \sin^{2} \frac{\pi}{6} : \sin^{2} \frac{\pi}{4} : \sin^{2} \frac{\pi}{3} : \sin^{2} \frac{\pi}{2} \\  =  ({ \frac{1}{2} })^{2} :({ \frac{1}{ \sqrt{2} } })^{2} : ({ \frac{ \sqrt{3} }{2} })^{2} : { 1}^{2}  \\  =  \frac{1}{4} : \frac{1}{2} : \frac{3}{4} :1 \\ multiplying \: by \: 4 \\  =  \frac{1}{4}  \times 4: \frac{1}{2}  \times 4: \frac{3}{4}  \times 4:1 \times 4 \\  = 1:2:3:4

Hence,

LHS = RHS  \: proved \\ 1:2:3:4 = 1:2:3:4

Similar questions