Math, asked by akanksha4215, 1 year ago

Sin2 A. Cos2B+cos2 A. Sin2B+ cos2A. Cos2 B+sin2A. Sin2B=1​

Answers

Answered by MaheswariS
15

Answer:

\sin^2 A.cos^2B+cos^2A.sin^2B+ cos^2A. cos^2B+sin^2A.sin^2B=1

Step-by-step explanation:

\text{Prove that:}sin^2 A.cos^2B+cos^2A.sin^2B+ cos^2A. cos^2B+sin^2A.sin^2B=1

sin^2 A.cos^2B+cos^2A.sin^2B+ cos^2A. cos^2B+sin^2A.sin^2B=1

using

\boxed{cos^2\theta=1-sin^2\theta}

=sin^2 A.(1-sin^2B)+(1-sin^2A).sin^2B+(1-sin^2A) (1-sin^2B)+sin^2A.sin^2B

=sin^2 A-sin^2A\:sin^2B+sin^2B-sin^2A\:sin^2B+(1-sin^2A) (1-sin^2B)+sin^2A\:sin^2B

=sin^2 A+sin^2B-sin^2A\:sin^2B+(1-sin^2A) (1-sin^2B)

=sin^2 A+sin^2B-sin^2A\:sin^2B+1-sin^2A-sin^2B+sin^2A\:sin^2B

=sin^2 A+sin^2B+1-sin^2A-sin^2B

=1

\implies\:\boxed{sin^2 A.cos^2B+cos^2A.sin^2B+ cos^2A. cos^2B+sin^2A.sin^2B=1}

Answered by Anonymous
2

Answer:

hope it helps!!!!!

Step-by-step explanation:

sin2acos2b+cos2asin2b+cos2acos2b+sin2asin2b=1

Attachments:
Similar questions