Math, asked by monsmr75, 5 days ago

(sin²∅+cos²∅)/(sec²∅-tan²∅)=1 prove that​

Answers

Answered by s1274himendu3564
36

LHS

= tan²p∅- sin²∅

= sin²∅/cos²∅-sin²0∅

= sin ²∅-sin²Ø cos²∅/cos²∅

= sin²∅(1-cos²∅)/cos²∅

= sin²Ø(sin²Ø)/cos²∅

= sin²∅/cos²∅ × sin²∅

= tan² ∅x sin²∅

LHS = RHS

Answered by shouvikmandal2002
29

Answer:

The Answer is obviously one(1)

Step-by-step explanation:

We came through trigonometry Sin²¢ + Cos²¢ =1

if Sin²¢ + Cos²¢ =1 is divided by Cos²¢

then tan²¢+1 = sec²¢

or, sec²¢ - tan²¢ = 1

Now

(sin²∅+cos²∅)/(sec²∅-tan²∅)=1

Proved

Similar questions