(sin²∅+cos²∅)/(sec²∅-tan²∅)=1 prove that
Answers
Answered by
36
LHS
= tan²p∅- sin²∅
= sin²∅/cos²∅-sin²0∅
= sin ²∅-sin²Ø cos²∅/cos²∅
= sin²∅(1-cos²∅)/cos²∅
= sin²Ø(sin²Ø)/cos²∅
= sin²∅/cos²∅ × sin²∅
= tan² ∅x sin²∅
LHS = RHS
Answered by
29
Answer:
The Answer is obviously one(1)
Step-by-step explanation:
We came through trigonometry Sin²¢ + Cos²¢ =1
if Sin²¢ + Cos²¢ =1 is divided by Cos²¢
then tan²¢+1 = sec²¢
or, sec²¢ - tan²¢ = 1
Now
(sin²∅+cos²∅)/(sec²∅-tan²∅)=1
Proved
Similar questions
English,
2 days ago
Math,
5 days ago
History,
5 days ago
Social Sciences,
8 months ago
Math,
8 months ago