sin²(n+1)Theta - Sin²ntheta = sin(2n+1)Theta.Sin Theta
Answers
To prove ----->
Sin² ( n + 1 )θ - Sin²nθ = Sin ( 2n + 1 )θ Sinθ
Proof -----> We know that,
Sin² A - Sin²B = Sin ( A + B ) Sin ( A - B )
Now taking LHS
= Sin² ( n + 1 ) θ - Sin²nθ
= Sin² ( nθ + θ ) - Sin²nθ
= Sin ( nθ + θ + nθ ) Sin ( nθ + θ - nθ )
= Sin ( 2nθ + θ ) Sin θ
= Sin ( 2n + 1 )θ Sinθ = RHS
Additional information ----->
1) Cos²Α - Sin²A = Cos ( A + B ) Cos ( A - B )
2) 2 SinA CosB = Sin ( A + B ) + Sin ( A - B )
3) 2 CosA SinB = Sin ( A + B ) - Sin ( A - B )
4) 2 CosA CosB = Cos ( A + B ) + Cos ( A - B )
5) 2 SinA SinB = Cos ( A - B ) - Cos ( A + B )
6) Sin 2A = 2 SinA CosA
7) Cos2A = 2 Cos²A - 1
= 1 - 2 Sin²A
= Cos²A - Sin²A
8) tan2A = 2tanA / ( 1 - tan²A )
9) Sin2A = 2tanA / ( 1 + tan²A )