sin²+sin⁴=1 then cot²+cot⁴=?
Answers
Answered by
3
Given:
→ sin²∅ + sin⁴∅ = 1
→ sin²∅(1 + sin²∅)
→ (1 - cos²∅)(1 + 1 - cos²∅) = 1
→ (1 - cos²∅)(2 - cos²∅) = 1
→2 - cos²∅ - 2cos²∅ + cos⁴∅ = 1
→ 1 - cos²∅ + 1 - 2cos²∅ + cos⁴∅ = 1
→ sin²∅ + (1 - cos²∅) = 1
Case 1:
→ sin²∅ + sin²∅ = 1
→ sin²∅ = ½
Case 2:
→ (1 - cos²∅) + (1 - cos²∅) = 1
→ 2 - 2 cos²∅ = 1
→ - 2 cos²∅ = - 1
→ cos²∅ = ½
→ cot²∅ + cot⁴∅ = (cos∅/sin∅)² + (cos∅/sin∅)⁴
→ cos²∅/sin²∅ + (cos²∅/sin²∅)²
→ (1/2)/(1/2) + [(1/2)/(1/2)]²
→ 1 + 1² = 2
Identities Used
- (1 - cos²∅) = sin²∅
- cot∅ = cos∅/sin∅
Answer: 2
Answered by
2
Step-by-step explanation:
sin^2A + sin^4A = 1
→sin^4A = cos^2A
→cot^2A + cot^4A = cot^2A•cosec^2A = cos^2A•cosec^2A/sin^2A
=cos^2A/sin^4A
=1
Similar questions