Math, asked by false13, 1 year ago

sin² x
1 + cot x
cos? *
1 + tan x
= sin x cos x​

Answers

Answered by Brenquoler
27

lets \: Consider, \\ \sf \:\bigg(1 + \dfrac{1}{ {tan}^{2} x}\bigg)\bigg(1 + \dfrac{1}{ {cot}^{2}x}\bigg) \\ \sf \: = \: \: \bigg(1 + \dfrac{ {cos}^{2}x }{ {sin}^{2} x}\bigg)\bigg(1 + \dfrac{ {sin}^{2}x }{ {cos}^{2}x}\bigg)\\  \\ \sf \: = \: \: \bigg(\dfrac{{sin}^{2}x + {cos}^{2}x}{ {sin}^{2}x}\bigg)\bigg(\dfrac{{cos}^{2}x+{sin}^{2}x }{ {cos}^{2}x}\bigg)\\  \\ \sf \: = \: \: \dfrac{1}{{sin}^{2}x} \times\dfrac{1}{{cos}^{2}x}\\  \\ \sf \: = \: \: \dfrac{1}{{sin}^{2}x {cos}^{2} x} \\ \sf \: = \: \: \dfrac{1}{{sin}^{2}x (1 - {sin}^{2} x)}\\ \sf \: = \: \: \dfrac{1}{{sin}^{2}x - {sin}^{4} x}

 { \red{ \bf{   Information \: related \: to \:Trigonometry:}}}

 { \green{ \bf{ sin θ = Opposite Side/Hypotenuse  }}}

 { \green{ \bf{  cos θ = Adjacent Side/Hypotenuse }}}

 { \green{ \bf{tan θ = Opposite Side/Adjacent Side   }}}

 { \green{ \bf{sec θ = Hypotenuse/Adjacent Side   }}}

 { \green{ \bf{  cosec θ = Hypotenuse/Opposite Side }}}

 { \green{ \bf{  cot θ = Adjacent Side/Opposite Side }}}

 { \red{ \bf{Their \: reciprocal \: Identities:   }}}

 { \green{ \bf{  cosec θ = 1/sin θ }}}

 { \green{ \bf{ sec θ = 1/cos θ  }}}

 { \green{ \bf{  cot θ = 1/tan θ }}}

 { \green{ \bf{sin θ = 1/cosec θ   }}}

 { \green{ \bf{ cos θ = 1/sec θ  }}}

 { \green{ \bf{   tan θ = 1/cot θ}}}

 { \red{ \bf{ Their \: co-function \: Identities:  }}}

 { \green{ \bf{  sin (90°−x) = cos x }}}

 { \green{ \bf{cos (90°−x) = sin x   }}}

 { \green{ \bf{ tan (90°−x) = cot x  }}}

 { \green{ \bf{  cot (90°−x) = tan x }}}

 { \green{ \bf{ sec (90°−x) = cosec x  }}}

 { \green{ \bf{ cosec (90°−x) = sec x  }}}

 { \red{ \bf{ Their \: fundamental \: trigonometric \: identities:  }}}

 { \green{ \bf{  sin²θ + cos²θ = 1 }}}

 { \green{ \bf{  sec²θ - tan²θ = 1 }}}

 { \green{ \bf{ cosec²θ - cot²θ = 1  }}}

Similar questions