Math, asked by saikhsameer987, 11 months ago

sin² x +sin x = 1 , tan⁴x - tan²x=?​

Answers

Answered by shreyanshpuri0
0

Answer:

1

Step-by-step explanation:

Note:

a). (cosX)^2 + (sinX)^2 = 1

b). 1 + (tanX)^2 = (secX)^2

c). 1 + (cotX)^2 = (cosecX)^2

d). tanX = sinX/cosX

e). cosX•secX = 1

Given:

(cosX)^4 + (cosX)^2 = 1

To prove:

(tanX)^4 + (tanX)^2 = 1

Proof:

We have;

=> (cosX)^4 + (cosX)^2 = 1

=> (cosX)^4 = 1 - (cosX)^2

=> (cosX)^4 = (sinX)^2

{using formula-(a)}

=> (cosX)^2•(cosX)^2 = (sinX)^2

=> (cosX)^2 = (sinX)^2/(cosX)^2

=> (cosX)^2 = (tanX)^2 -------(1)

Now, we have;

LHS = (tanX)^4 + (tanX)^2

= (tanX)^2{ (tanX)^2 + 1 }

= (tanX)^2(secX)^2

{using formula-(b)}

= (cosX)^2(secX)^2

= 1.

Similar questions