sin² x +sin x = 1 , tan⁴x - tan²x=?
Answers
Answered by
0
Answer:
1
Step-by-step explanation:
Note:
a). (cosX)^2 + (sinX)^2 = 1
b). 1 + (tanX)^2 = (secX)^2
c). 1 + (cotX)^2 = (cosecX)^2
d). tanX = sinX/cosX
e). cosX•secX = 1
Given:
(cosX)^4 + (cosX)^2 = 1
To prove:
(tanX)^4 + (tanX)^2 = 1
Proof:
We have;
=> (cosX)^4 + (cosX)^2 = 1
=> (cosX)^4 = 1 - (cosX)^2
=> (cosX)^4 = (sinX)^2
{using formula-(a)}
=> (cosX)^2•(cosX)^2 = (sinX)^2
=> (cosX)^2 = (sinX)^2/(cosX)^2
=> (cosX)^2 = (tanX)^2 -------(1)
Now, we have;
LHS = (tanX)^4 + (tanX)^2
= (tanX)^2{ (tanX)^2 + 1 }
= (tanX)^2(secX)^2
{using formula-(b)}
= (cosX)^2(secX)^2
= 1.
Similar questions