Sin20. Sin40. Sin60. Sin80=3/16
Answers
Answered by
19
sin20. sin 40. sin60. sin80
=> sin60[sin20.sin40.sin80]
=>√3/2[sin20.sin(60-20).sin(60+20)]
=>√3/2[sin 3(20)/4]
=>√3/2[sin 60/4]
=>√3/2[√3/2*4]
=>√3/2*√3/8
=3/16
hope it's help u
Answered by
12
LHS = sin20 . sin40 . √3/2 .sin80
= √3/4 . sin20(2sin40.sin80)
= √3/4 . sin20(cos40 - cos120)
= √3/4 . sin20(cos40+1/2)
= √3/8 . sin20(2cos40+1)
= √3/8 .(2cos40.sin20 + sin20)
= √3/8 . (sin60 - sin20 + sin20)
= √3/8 .sin60
= √3/8 . √3/2
= 3/16 = RHS
= √3/4 . sin20(2sin40.sin80)
= √3/4 . sin20(cos40 - cos120)
= √3/4 . sin20(cos40+1/2)
= √3/8 . sin20(2cos40+1)
= √3/8 .(2cos40.sin20 + sin20)
= √3/8 . (sin60 - sin20 + sin20)
= √3/8 .sin60
= √3/8 . √3/2
= 3/16 = RHS
Similar questions