sin20° sin40° sin60° sin80°=3/16
Answers
Answer:
sin20. sin 40. sin60. sin80
=> sin60[sin20.sin40.sin80]
=>√3/2[sin20.sin(60-20).sin(60+20)]
=>√3/2[sin 3(20)/4]
=>√3/2[sin 60/4]
=>√3/2[√3/2*4]
=>√3/2*√3/8
=3/16
hope it's help u
Answer:
since,sin60=√ 3/2
= √ 3/2( sin20sin40sin80)
=√ 3/2 ( sin20sin80sin40)
=√ 3/4 [(2sin20sin40)sin80]
on applying [cos(A-B)-cos(A+B) = 2sinAsinB]
we get,
= √ 3/4 (cos20-cos60) sin80 [since,cos(-a)=cosa]
= √ 3/ 4 (cos20sin80-cos60sin80)
= √ 3/8(2sin80cos20-sin80)
= √ 3/8 (sin100+sin60-sin80)
= √ 3/8 ( √ 3/2+sin100-sin80 )
= √ 3/8 ( √ 3/2+sin(180-80)-sin80 )
= √ 3/8( √ 3/2+sin80-sin80 ) [since,sin(180-a)=sina]
= √ 3/8( √ 3/2)
= 3/16
HOPE IT HELPS YOU