Math, asked by simonashahoon83, 1 month ago

sin24° + cos6° =

[ Hint : write cos 6°= sin84° and apply cos 6°= sin84°​

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\sf{Given \:Question - }}

Evaluate

\rm :\longmapsto\:sin24\degree  + cos6\degree

\large\underline{\sf{Solution-}}

Given Trigonometric function is

\rm :\longmapsto\:sin24\degree  + cos6\degree

\rm \:  =  \: sin24\degree  + cos(90\degree  - 84\degree )

\rm \:  =  \: sin24\degree  + sin84\degree

\rm \:  =  \: sin84\degree  + sin24\degree

We know,

\red{ \boxed{ \sf{ \:sinx + siny = 2sin\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]}}}

So, using this identity, we get

\rm \:  =  \: 2sin\bigg[\dfrac{84\degree  + 24\degree }{2} \bigg]cos\bigg[\dfrac{84\degree  - 24\degree }{2} \bigg]

\rm \:  =  \: 2sin[54\degree ] \: cos[30\degree ]

We know,

\red{ \boxed{ \sf{ \:sin54\degree  =  \frac{ \sqrt{5} + 1 }{4}}}} \:  \: and \:  \:  \: \red{ \boxed{ \sf{ \:cos30\degree  =  \frac{ \sqrt{3} }{2}}}}

So, on substituting these values, we get

\rm \:  =  \: 2 \times \dfrac{ \sqrt{5}  + 1}{4} \times \dfrac{ \sqrt{3} }{2}

\rm \:  =  \: \dfrac{ \sqrt{3}( \sqrt{5} + 1) }{4}

\rm \:  =  \: \dfrac{ \sqrt{15}  +  \sqrt{3} }{4}

So,

\red{ \boxed{ \sf{ \:sin24\degree  + cos6\degree =  \: \dfrac{ \sqrt{15}  +  \sqrt{3} }{4}}}}

Additional Information :-

\red{ \boxed{ \sf{ \:sin18\degree  =  \frac{ \sqrt{5}  - 1}{4}}}}

\red{ \boxed{ \sf{ \:sin36\degree  =  \frac{ \sqrt{10 - 2 \sqrt{5} } }{4}}}}

\red{ \boxed{ \sf{ \:sin72\degree  =  \frac{ \sqrt{10 + 2 \sqrt{5} } }{4}}}}

\red{ \boxed{ \sf{ \:cos18\degree  =  \frac{ \sqrt{10 + 2 \sqrt{5} } }{4}}}}

\red{ \boxed{ \sf{ \:cos72\degree  =  \frac{ \sqrt{5}  - 1}{4}}}}

\red{ \boxed{ \sf{ \:cos36\degree  =  \frac{ \sqrt{5} + 1}{4}}}}

Similar questions