sin290°.tan100°cos780°÷cot370°sin1125°.cos200°
Answers
it is given that
sin290°. tan100°. cos780°/(cot370°. sin1125°. cos200°)
we know, sin290° = sin(270° + 20°) = -cos20°
tan100° = tan(90° + 10°) = -cot10°
cos780° = cos(720° + 60°) = cos60°
cot370° = cot(360° + 10°) = cot10°
sin1125° = sin(1080° + 45°) = sin45°
cos200° = cos(180° + 20°) = -cos20°
sin290°. tan100°. cos780°/(cot370°. sin1125°. cos200°)
= (-cos20°).(-cot10°)(cos60°)/{(cot10°)(sin45°).(-cos20°)}
= -cos60°/sin45°
= -(1/2)/(1/√2)
= -1/√2
therefore, value of given expression is -1/√2
also read similar questions : Find the value of tan100+tan125+tan100*tan125
https://brainly.in/question/1287638
Tan100° + 2Tan70°
Please answer this brainly experts
https://brainly.in/question/9598590
tan100° =tan (90°+10°)=-cot10
cos780°=cos(720+60°)=cos60°
cot370°=cot(360°+10°)=cot10°
sin1125°=sin(1080°+45°)=sin45°
cos200°=cos(180°+20°)=-cos20°
sin290°. tan100°. cos780°/(cot370°. sin1125°. cos200°
=(-cos20°). (-cot10°)(cos60°)/{(cot10°)(sin45°). (-cos20°)}
= -cos60°/sin45°
= -(1/2)/(1/√2)
= -1/√2
So, the value of given expression is -1/√2