Math, asked by Divyakishorrv, 1 month ago

sin2A=cos(A-30°) find A​

Answers

Answered by Anonymous
35

Answer:

{ \sf{ \underline{ \large{Given}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {  \sf{❍  \: Sin2A = Cos(A - 30°)}}

{ \large{ \sf{ \underline{To  \: Find}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {  \sf{❍  \: Find  \: Angle  \: A? }}

{ \large{ \sf{ \underline{Solution}}}}

  • Here We using identify, Sin(90-A) = CosA, By this formula we can find angle A. Let's Start Our Solution.

━━━━━━━━━━━━━━━━━━━━━

{\dashrightarrow{\sf{Sin2A = Cos(A - 30°)}}} \\  \\  \\ {\dashrightarrow{\sf{Cos(90-2A)= Cos(A-30°)}}} \\  \\  \\ {\dashrightarrow{\sf{90-2A = A-30°}}} \\  \\  \\ {\dashrightarrow{\sf{90+30=A+2A}}} \\  \\  \\ {\dashrightarrow{\sf{120°=3A}}} \\  \\  \\ {\dashrightarrow{\sf{A= \frac{120}{3} }}} \\  \\  \\ {\dashrightarrow{\sf{A=40°}}} \\  \\  \\  \\ { \sf{ \boxed{ \boxed{ \pink{\sf{\therefore{Angle \: A = 40°}}}}}}}

Similar questions