English, asked by lakhveerbrar863, 6 months ago

Sin²A Cos² B - Cos²A SinB = Sin²A-Sin² B​

Answers

Answered by TEJPRATAPSINGH2725
1

Explanation:

cos²(a - b) + cos²(b) - 2.cos(a - b).cos(a).cos(b) → recall: cos(a - b) = cos(a).cos(b) + sin(a).sin(b)

= [cos(a).cos(b) + sin(a).sin(b)]² + cos²(b) - 2.[cos(a).cos(b) + sin(a).sin(b)].cos(a).cos(b)

= cos²(a).cos²(b) + 2.cos(a).cos(b).sin(a).sin(b) + sin²(a).sin²(b) + cos²(b) - 2.cos²(a).cos²(b) - 2.sin(a).sin(b).cos(a).cos(b)

= sin²(a).sin²(b) + cos²(b) - cos²(a).cos²(b)

= sin²(a).sin²(b) + cos²(b).[1 - cos²(a)]

= sin²(a).sin²(b) + cos²(b).sin²(a)

= sin²(a).[sin²(b) + cos²(b)]

= sin²(a)

Answered by Anonymous
3

Answer:

see the answer in phot mate

Attachments:
Similar questions