Sin²A Cos² B - Cos²A SinB = Sin²A-Sin² B
Answers
Answered by
1
Explanation:
cos²(a - b) + cos²(b) - 2.cos(a - b).cos(a).cos(b) → recall: cos(a - b) = cos(a).cos(b) + sin(a).sin(b)
= [cos(a).cos(b) + sin(a).sin(b)]² + cos²(b) - 2.[cos(a).cos(b) + sin(a).sin(b)].cos(a).cos(b)
= cos²(a).cos²(b) + 2.cos(a).cos(b).sin(a).sin(b) + sin²(a).sin²(b) + cos²(b) - 2.cos²(a).cos²(b) - 2.sin(a).sin(b).cos(a).cos(b)
= sin²(a).sin²(b) + cos²(b) - cos²(a).cos²(b)
= sin²(a).sin²(b) + cos²(b).[1 - cos²(a)]
= sin²(a).sin²(b) + cos²(b).sin²(a)
= sin²(a).[sin²(b) + cos²(b)]
= sin²(a)
Answered by
3
Answer:
see the answer in phot mate
Attachments:
Similar questions