Math, asked by sanglapghosh51, 10 months ago

sin²a-cosa=1/4. please solve it​

Attachments:

Answers

Answered by Cosmique
2

\underline{ \tt \: question}

  \tt \: solve \: to \: find \:  \alpha

\tt \:  {sin}^{2}  \alpha  - cos \:  \alpha  =  \frac{1}{4}

\underline{ \tt \: solution}

we have,

 {sin}^{2}  \alpha  - cos \:  \alpha  =  \frac{1}{4}

(multiplying by 4 both sides)

4 {sin}^{2}  \alpha  - 4 \: cos \:  \alpha  =1

(using identity )

(\small{1 -  {cos}^{2}  \alpha  =  {sin}^{2}  \alpha })

we will get,

4( {1 -  {cos}^{2} \alpha  }) - 4cos  \: \alpha  = 1 \\  \\ 4 - 4 {cos}^{2}  \alpha  - 4 \: cos \:  \alpha  = 1 \\  \\  - 4 {cos}^{2}  \alpha  - 4cos \:  \alpha  + 3 = 0

(multiplying by -1 both sides)

4 {cos}^{2}  \:  \alpha  + 4cos \:  \alpha   - 3 = 0

let us take

cos \:  \alpha  =  x

we will get a quadratic polynomial in x variable

4 {x}^{2}  + 4x - 3 = 0 \\  \\ 4 {x}^{2} + 6x - 2x - 3 = 0 \\  \\ 2x(2x + 3) - 1(2x + 3) = 0 \\  \\ (2x - 1)(2x + 3) = 0 \\  \\ x =  \frac{1}{2}   \: and \: x =  \frac{ - 3}{2}

it means we get two values of

cos \:  \alpha

but as

cos\alpha \: cannot \: be \: smaller \: than \:  - 1 \:  \\ hence \: the \: possible \: value \: we \: get \: is \\  \\ cos \:  \alpha  =  \frac{1}{2}

also,

cos 60° = 1 / 2

hence,

\boxed{ \alpha  = 60\degree}

Similar questions