(sin2a)(cosa)/(1+cos2a)(1+cosa)= tana/2. prove this
Answers
Answered by
2
sin2a = 2sina . cosa
And cos2a = 2cos^2a -1 (cos2a= cos^2a-sin^2a)
So
the equation transforms to
sina/(1+cosa), cancelling 2cos^2a on both numerator and denominator..
Now sina=2sinx. cosx, considering a =2(x) where x=a/2
and cosa=2cos^2x-1
So the equation transforms to
(sinx)/(cosx)
or tanx
or
tana/2...
And cos2a = 2cos^2a -1 (cos2a= cos^2a-sin^2a)
So
the equation transforms to
sina/(1+cosa), cancelling 2cos^2a on both numerator and denominator..
Now sina=2sinx. cosx, considering a =2(x) where x=a/2
and cosa=2cos^2x-1
So the equation transforms to
(sinx)/(cosx)
or tanx
or
tana/2...
sksssksk:
Can u explain it
Similar questions