sin2a × secA × cot2A =
Answers
Step-by-step explanation:
ENROLL NOW
×
CBSEICSEJEENEETPRICING
Request a call back
User profile image
Login /
Sign Up
Home
Class 1 to 12
JEE
NEET
Foundation
Doubt and Solutions
Textbook Solutions
Board Papers
Sample Papers
Pricing
Diagnostic Test
B2B Partners
Franchisee
Topper TV
Topperlearning
ICSE Class 10 - Ask The Expert
Answered
prove that:
(sinA + cosecA)^2 + (cosA + secA)^2 = 7 + tan^2A + cot^2A
Asked by Vru23 | 28th Jul, 2020, 08:20: PM
Expert Answer:
To prove:- (sinA + cosecA)2 + (cosA + secA)2 = 7 + tan2A + cot2A
LHS = (sinA + cosecA)2 + (cosA + secA)2
= sin2A + cosec2A + 2 sinA cosecA + cos2A + sec2A + 2 cosA secA
= sin2A + cos2A + 2 + cosec2A + sec2A + 2
= 1 + 4 + cosec2A + sec2A
= 5 + 1 + cot2A + 1 + tan2A
= 7 + cot2A + tan2A
Hence proved.
Answered by Renu Varma | 29th Jul, 2020, 10:53: AM
Concept Videos
Practice Test
All Questions Ask Doubt
(cosec A -sinA) (sec A -cosA)=1/tanA cot A
sec²a.cosec²a = tan²a + cot²a+ 2
(sin A+ cos A) (sec A+ cosec A) = 2+sec A.cosec A
tan2-sin2=tan2.sin2
cot2 A - cos2 A = cot2 A × cos2 A
prove that 3(sinA-cosA)^⁴+6(sinA+cosA)^²+(sin^⁶A+cos^⁶A)=14
Prove that √1+cosø/1 -cosø + √1-cosø/1+cosø = 2cosecø
tan^2 a - sin^2 a =
1st question please solve it !
prove that: sin^3/cosA + sinAcosA = tanA
BOARDS
CBSE
ICSE
Maharashtra
Gujarat
ENTRANCE EXAMS
STUDY RESOURCES
FREE TEXTBOOK SOLUTIONS
QUICK LINKS
TOPPER TV
CONTACT :
1800 212 7858 / +91 9372462318
9:00am - 9:00pm IST all days.
DOWNLOAD OUR APP NOW :
NEWSLETTER : Get latest updates in your inbox
Your Email ID
Subscribe
STAY CONNECTED :
REGISTERED OFFICE :
First Floor, Empire Complex, 414 Senapati Bapat Marg, Lower Parel, Mumbai - 400013, Maharashtra India.
About UsContact UsTopper In PressTerms and ConditionsPrivacy PolicyCareersTestimonials
NETWORK18 SITES
News18 IndiaCricketNextBangla NewsGujarati NewsUrdu NewsFirstpostMarathi NewsMoneycontrolCompareIndiaHistory IndiaMTV IndiaIn.com
Copyright Notice © 2021 Greycells18 Media Limited and its licensors. All rights reserved.
Answer:
Given expression is
1−cosA2sinAcos2A1+cos2A1
=1−cosA2sinAcos2A2cos2A1
=1−cosAsinA
=2sin22A2sin2Acos2A
=cot2A