sin2a+sin2b+sin2c=4cosacosbcosc
Answers
Answered by
5
Answer:
sin(2A) + sin(2B) - sin(2C) = 2sin(A + B)*cos(A - B) - 2*sin(C)*cos(C)
wkt for a triangle A + B + C = 180°, A + B = 180° - C
==> sin(A + B) = sin(180° - C) = sin(C)
Also cos(C) = cos{180° - (A + B)} = -cos(A + B)
Thus , sin(2A) + sin(2B) - sin(2C) = 2sin(C)*cos(A - B) - 2*sin(C)*cos(C)
= 2sin(C){cos(A - B) - cos(C)}
= 2sin(C){cos(A - B) + cos(A + B)}
= 2sin(C)*2cos(A)*cos(B) [Identity]
= 4*cos(A)*cos(B)*sin(C)
Thus sin(2A) + sin(2B) - sin(2C) = 4*cos(A)*cos(B)*sin(C)
Similar questions