sin2a+sin2B+sin2C=4cosAsinBcosC
Answers
Answered by
0
Step-by-step explanation:
A+B+C= π
• A+B= π-C
• sin 2C = 2 sin C cos C
• sin A + sin B = 2 sin (A+B / 2 ) + cos (A - B / 2 )
LHS = 2 sin (2A + 2B / 2 ) cos ( 2A - 2B / 2) + 2 sin C cos C
2 sin (A + B ) cos ( A - B ) + 2 sin C cos C
2 sin ( π - C ) cos ( A - B ) + 2 sin C cos C
2 sin C cos ( A - B ) + 2 sin C cos C
2 sin C ( cos (A - B ) + cos C )
2 sin C ( cos (A-B ) + cos (π- ( A+B ))
2 sin C ( cos ( A-B ) - cos ( A+B ))
2 sin C ( 2 sin A sin B)
4 sin A sin B sin C
Similar questions
English,
2 months ago
Business Studies,
2 months ago
Physics,
10 months ago
Math,
10 months ago
Math,
10 months ago