Science, asked by priyansu2, 1 year ago

sin2A+sin2B+sin2C-sin2(A+B+C)=4sin(B+C)sin(C+A)sin(A+B)

Answers

Answered by MaheswariS
9

Sin2A+sin2B+sin2C-sin2(A+B+C)=4sin(B+C)sin(C+A)sin(A+B)

\textbf{To prove:}

\sin{2A}+\sin{2B}+\sin{2C}-\sin{2(A+B+C)}=4\,\sin(A+B)\,\sin(B+C)\,\sin(A+C)

\textbf{Solution:}

\sin{2A}+\sin{2B}+\sin{2C}-\sin{2(A+B+C)}

\text{Using the identity}

\boxed{\bf\,sinC+sinD=2\,sin(\dfrac{C+D}{2})\,cos(\dfrac{C-D}{2})}

\boxed{\bf\,sinC-sinD=2\,cos(\dfrac{C+D}{2})\,sin(\dfrac{C-D}{2})}

=2\,\sin(A+B)\,\cos(A-B)+2\,\cos(A+B+2C)\,\sin(-(A+B))

=2\,\sin(A+B)\,\cos(A-B)-2\,\cos(A+B+2C)\,\sin(A+B)

=2\,\sin(A+B)[\cos(A-B)-\cos(A+B+2C)]

\text{Using the identity,}

\boxed{\bf\,cosC-cosD=-2\,sin(\dfrac{C+D}{2})\,sin(\dfrac{C-D}{2})}

=2\,\sin(A+B)[-2\,\sin(A+C)\,\sin(-B-C)]

=2\,\sin(A+B)[-2\,\sin(A+C)\,\sin(-(B+C))]

=2\,\sin(A+B)[2\,\sin(A+C)\,\sin(B+C)]

=4\,\sin(A+B)\,\sin(B+C)\,\sin(A+C)

\implies\bf\sin{2A}+\sin{2B}+\sin{2C}-\sin{2{A+B+C)}=4\,\sin(A+B)\,\sin(B+C)\,\sin(A+C)

Similar questions