Sin2a+sin4a+sin6a+sin8a/cos2a+cos4a+cos6a+cos8a=tan5a
Answers
Step-by-step explanation:
2sin(2A+4A/2)cos(2A-4A/2) + 2sin(6A+8A/2)cos(6A-8A/2)/2cos(2A+4A/2)cos(2A-4A/2)+2cos(6A+8A/2)cos(6A-8A/2)
------using identity sinA + sinB=2sin(A+B/2)cos(A-B/2)
cosA+cosB= 2cosA+B/2 cos A-B/2
2 sin3Acos(-A)+2sin7Acos(-A) /2cis3Acis(-A) +2cos7Acos(-A)
2cos(-A) (sin3A+sin7A)/2cos(-A) (cos3A+cos7A)
sin3a+sin7a/cos3a+cos7a
2sin3a+7a/2 cos3a-7a/2/2cos3a+7a/2cos3a-7a/2
sin5a cos -4a/cos5a cos-4a
sin5a/cos5a=tan5a
Therefore ( Sin 2a + Sin 4a + Sin 6a + Sin 8a ) / ( Cos 2a + Cos 4a + Cos 6a + Cos 8a ) = Tan 5a has been proved successfully.
Given:
( Sin 2a + Sin 4a + Sin 6a + Sin 8a ) / ( Cos 2a + Cos 4a + Cos 6a + Cos 8a ) = Tan 5a
To Find:
Prove that, ( Sin 2a + Sin 4a + Sin 6a + Sin 8a ) / ( Cos 2a + Cos 4a + Cos 6a + Cos 8a ) = Tan 5a
Solution:
The given question can be answered as shown below.
Given:
LHS: ( Sin 2a + Sin 4a + Sin 6a + Sin 8a ) / ( Cos 2a + Cos 4a + Cos 6a + Cos 8a )
RHS: Tan 5a
Some trigonometric identities,
Sin A + Sin B = 2sin [ ( A + B ) / 2 ]. Cos [ ( A - B ) / 2 ]
Cos A + Cos B = 2 Cos [ ( A + B ) / 2 ]. Cos [ ( A - B ) / 2 ]
Solving LHS:
⇒ ( Sin 2a + Sin 4a + Sin 6a + Sin 8a ) / ( Cos 2a + Cos 4a + Cos 6a + Cos 8a )
⇒ [ ( Sin 2a + Sin 8a ) + ( Sin 4a + Sin 6a ) ] / [ ( Cos 2a + Cos 8a ) + ( Cos 4a + Cos 6a ) ]
Applying trigonometric identities,
⇒ ( Sin 2a + Sin 8a ) = 2 Sin [ ( 2a + 8a ) / 2 ]. Cos [ ( 2a - 8a ) / 2] = 2 Sin 5a. Cos 3a
⇒ ( Sin 4a + Sin 6a ) = 2 Sin [ ( 4a + 6a ) / 2 ]. Cos [ ( 4a - 6a ) / 2] = 2 Sin 5a. Cos a
⇒ ( Cos 2a + Cos 8a ) = 2 Cos [ ( 2a + 8a ) / 2 ]. Cos [ ( 2a - 8a ) / 2] = 2 Cos 5a. Cos 3a
⇒ ( Cos 4a + Cos 6a ) = 2 Cos [ ( 4a + 6a ) / 2 ]. Cos [ ( 4a - 6a ) / 2] = 2 Cos 5a. Cos a
Now in the question,
⇒ [ ( Sin 2a + Sin 8a ) + ( Sin 4a + Sin 6a ) ] / [ ( Cos 2a + Cos 8a ) + ( Cos 4a + Cos 6a ) ] = [ 2 Sin 5a. Cos 3a + 2 Sin 5a. Cos a ] / [ 2 Cos 5a. Cos 3a + 2 Cos 5a. Cos a ]
⇒ 2 Sin 5a ( Cos 3a + Cos a ) / 2 Cos 5a ( Cos 3a + Cos a )
⇒ Sin 5a / Cos 5a = Tan 5a
RHS: Tan 5a
⇒ LHS = RHS
Hence proved.
Therefore ( Sin 2a + Sin 4a + Sin 6a + Sin 8a ) / ( Cos 2a + Cos 4a + Cos 6a + Cos 8a ) = Tan 5a has been proved successfully.
#SPJ3