sin²Q tanQ + cos²Q cotQ + 2sinQ cosQ = tanQ + cotQ
pls give answer i will mark brainlist
Answers
Step-by-step explanation:
Given :-
sin²Q tanQ + cos²Q cotQ + 2sinQ cosQ
To find :-
Prove that :
sin²Q tanQ + cos²Q cotQ + 2sinQ cosQ = tanQ + cotQ
Solution:-
On taking LHS :-
sin²Q tanQ + cos²Q cotQ + 2sinQ cosQ
=> sin²Q (sinQ/cosQ) + cos²Q (cosQ/sinQ)
+ 2sinQ cosQ
Since Tan A = Sin A/ Cos A and
Cot A = Cos A/ Sin A
=>(sin³Q/cosQ)+(cos³Q/sinQ)+2sinQcosQ
=>(sin³Q sinQ+ cos³QcosQ+2sinQ cosQ . sinQ cosQ)/(sin Q cos Q)
=>(sin⁴Q+cos⁴Q+2sin²Qcos²Q)/(sinQcosQ)
=>[(sin²Q)² + 2sin²Q cos²Q + (cos²Q)²]/(sinQcosQ)
=> [sin²Q+cos²Q]² /(sinQcosQ)
Since (a+b)² = a²+2ab+b²
Where , a = sin²Q and b = cos²Q
We know that
Sin² A + Cos² A = 1
=> (1)²/(sinQcosQ)
=>( 1/sin Q )(1/cos Q)
=> LHS = Cosec Q . sec Q -----------(1)
On taking RHS :-
Tan Q + cot Q
=> (sin Q /Cos Q ) + ( cos Q / sin Q)
=> (sinQsinQ + cosQcosQ ) /( sin Q.cos Q)
=>( sin² Q + cos² Q)/(sin Q cos Q)
=> 1/(sin Q . cos Q)
Since Sin² A + Cos² A = 1
=>( 1/sin Q )(1/cos Q)
=> RHS = Cosec Q . sec Q -----------(2)
From (1) &(2)
LHS = RHS
Hence, Proved.
Answer:-
sin²Q tanQ + cos²Q cotQ + 2sinQ cosQ
= tanQ + cotQ
Used formulae:-
- Tan A = Sin A / Cos A
- Cot A = Cos A / Sin A
- 1 / Sin A = Cosec A
- 1 / Cos A = Sec A
- Sin² A + Cos² A = 1
- (a+b)² = a²+2ab+b²