Math, asked by bhushansharma9844, 1 month ago

sin2thetha=2cot thetha/cot square thetha+1​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\:sin2\theta

can be rewritten as

\rm \:  =  \:sin(\theta  + \theta )

\rm \:  =  \:sin\theta cos\theta  + cos\theta sin\theta

\rm \:  =  \:2sin\theta cos\theta

can be rewritten as

\rm \:  =  \:\dfrac{2sin\theta cos\theta }{1}

We know,

\boxed{ \tt{ \:  {sin}^{2}x +  {cos}^{2}x = 1 \:  \: }}

So, using this, we get

\rm \:  =  \:\dfrac{2 \: sin\theta cos\theta }{ {sin}^{2}\theta  +  {cos}^{2} \theta  }

can be further rewritten as

\rm \:  =  \:\dfrac{\dfrac{2sin\theta cos\theta }{ {sin}^{2} \theta } }{\dfrac{ {sin}^{2}\theta  +  {cos}^{2}\theta }{ {sin}^{2} \theta}}

\rm \:  =  \:\dfrac{\dfrac{2 cos\theta }{ {sin}\theta } }{1 + \dfrac{ {cos}^{2}\theta }{ {sin}^{2} \theta}}

We know,

\boxed{ \tt{ \:  \frac{cosx}{sinx} = cotx \:  \: }}

So, using this, we get

\rm \:  =  \:\dfrac{2 \: cot\theta }{1 +  {cot}^{2} \theta }

Hence,

\bf\implies \:\rm \boxed{ \tt{ \: \:sin2\theta  \:   =  \:\dfrac{2 \: cot\theta }{1 +  {cot}^{2} \theta } \:  \: }}

Hence, Proved

Additional Information :-

\boxed{ \tt{ \: sin2x = 2sinxcosx =  \frac{2tanx}{1 +  {tan}^{2} x} \:  \: }}

\boxed{ \tt{ \: cos2x =  {cos}^{2}x -  {sin}^{2}x = 1 -  {2sin}^{2}x =  {2cos}^{2}x - 1 \: }}

\boxed{ \tt{ \: cos2x =  \frac{1 -  {tan}^{2} x}{1 +  {tan}^{2} x} \:  \: }}

\boxed{ \tt{ \: tan2x =  \frac{2tanx}{1 -  {tan}^{2} x} \:  \: }}

\boxed{ \tt{ \: sin3x = 3sinx -  {4sin}^{3}x \:  \: }}

\boxed{ \tt{ \: cos3x =  {4cos}^{3}x - 3cosx \:  \: }}

\boxed{ \tt{ \: tan3x =  \frac{3tanx -  {tan}^{3}x }{1 -  {3tan}^{2} x}}}

Similar questions