Math, asked by nerkarprajwal6, 6 months ago

sin2x differnciate with respect to x

Answers

Answered by TheLifeRacer
15

Answer:

2cos2x

Step-by-step explanation:

Given :- sin2x

find dy/dx of sin2x

Let y = sin2x

Diffrentiating wrt to x

∴ dy /dx = d (sin2x)/dx

=> d(sin2x)/2x *d(2x)/dx [Using chain rule]

As We know , dy/dx of sinx is cosx

=> ∴ cos2x × 2

=> 2cos2x Answer

Answered by PharohX
3

Step-by-step explanation:

GIVEN :-

let y = sin2x

SOLUTION:-

 \sf \:  y =  \sin(2x)

 \sf \: differencate \: wrt. \: x

 \sf \implies \:  \frac{dy}{dx}  =  \frac{d}{dx} ( \sin(2x) ) \:  \:  \:  \:  \\  \\  \sf \implies \:  \frac{dy}{dx}  =  \cos(2x)  \frac{d}{dx} (2x) \\ \\   \sf \implies \:  \frac{dy}{dx}  =  \cos(2x) .2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf \implies \:  \frac{dy}{dx}  = 2 \cos(2x) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \sf \green{ \sf \: Note \rightarrow}

 \sf \: Differentiation \: of \:  \: term \: f(ax) \:  \: wrt. \: x

 \sf \:  \frac{df(ax)}{dx}  = f'(ax). \frac{d}{dx} (ax) \\

Thank you..

Similar questions
Math, 2 months ago