Math, asked by Man2510, 9 days ago

sin²x+sin²(x+π/3)+sin²(x-π/3)
Giải bằng 2 cách

Answers

Answered by mathdude500
3

Given Question

Evaluate the following

\rm :\longmapsto\: {sin}^{2}x +  {sin}^{2}\bigg[x + \dfrac{\pi}{3} \bigg] +  {sin}^{2} \bigg[x - \dfrac{\pi}{3} \bigg]

 \red{\large\underline{\sf{Solution-}}}

Given Trigonometric function is

\rm :\longmapsto\: {sin}^{2}x +  {sin}^{2}\bigg[x + \dfrac{\pi}{3} \bigg] +  {sin}^{2} \bigg[x - \dfrac{\pi}{3} \bigg]

Let first evaluate

\rm :\longmapsto\:sin\bigg[x + \dfrac{\pi}{3} \bigg]

\rm \:  =  \: sinx \: cos\dfrac{\pi}{3} + cosx \: sin\dfrac{\pi}{3}

\rm \:  =  \: \dfrac{1}{2}sinx + \dfrac{ \sqrt{3} }{2}cosx

Now, Consider

\rm :\longmapsto\:sin\bigg[x  -  \dfrac{\pi}{3} \bigg]

\rm \:  =  \: sinx \: cos\dfrac{\pi}{3}  -  cosx \: sin\dfrac{\pi}{3}

\rm \:  =  \: \dfrac{1}{2}sinx  -  \dfrac{ \sqrt{3} }{2}cosx

Now, Consider

\rm :\longmapsto\: {sin}^{2}x +  {sin}^{2}\bigg[x + \dfrac{\pi}{3} \bigg] +  {sin}^{2} \bigg[x - \dfrac{\pi}{3} \bigg]

\rm = {sin}^{2}x +  {\bigg[\dfrac{1}{2}sinx + \dfrac{ \sqrt{3} }{2} cosx\bigg]}^{2}  +  {\bigg[\dfrac{1}{2}sinx - \dfrac{ \sqrt{3} }{2}cosx\bigg]}^{2}

We know,

\boxed{ \tt{ \:  {(x + y)}^{2} +  {(x - y)}^{2}  = 2( {x}^{2} +  {y}^{2}) \: }}

So, using this, we get

\rm =  {sin}^{2}x + 2\bigg[\dfrac{1}{4} {sin}^{2}x  + \dfrac{3}{4} {cos}^{2}x\bigg]

\rm =  {sin}^{2}x + \dfrac{1}{2} {sin}^{2}x  + \dfrac{3}{2} {cos}^{2}x

\rm = \dfrac{3}{2} {sin}^{2}x  + \dfrac{3}{2} {cos}^{2}x

\rm = \dfrac{3}{2} \bigg[{sin}^{2}x  +  {cos}^{2}x\bigg]

\rm \:  =  \: \dfrac{3}{2}

Hence,

\rm :\longmapsto\: \boxed{ \tt{ \: {sin}^{2}x +  {sin}^{2}\bigg[x + \dfrac{\pi}{3} \bigg] +  {sin}^{2} \bigg[x - \dfrac{\pi}{3} \bigg] =  \frac{3}{2} \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn More :-

\boxed{ \tt{ \: sin(x + y) = sinxcosy + sinycosx \: }}

\boxed{ \tt{ \: sin(x  -  y) = sinxcosy  -  sinycosx \: }}

\boxed{ \tt{ \: cos(x + y) = cosxcosy - sinxsiny}}

\boxed{ \tt{ \: cos(x  -  y) = cosxcosy  +  sinxsiny}}

\boxed{ \tt{ \: tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany} \: }}

\boxed{ \tt{ \: tan(x  -  y) =  \frac{tanx  -  tany}{1 + tanx \: tany} \: }}

Similar questions