Sin2x+sin4x+sin6x=0 general values of it
Answers
Answered by
1
sin2x + sin4x + sin6x =0
(sin2x + sin6x) + sin4x=0
2sin4x.cos2x + sin4x=0
2sin4x.(2cos2x + 1)=0
2sin4x.[2(2cos^2x-1)+1]=0
2sin4x.[4cos^2x-1]=0
hence;
sin4x = 0 or 4cos^2x-1 = 0
sin4x = sin0 or 4cos^2x = 1
4x =0 or 2cos x = +1 or 2cos x = -1
4x = nπ or cos x = 1/2 or cos x = -1/2
x = nπ/4 or cos x = cos π/3 or cos x = -cosπ/3
x = nπ/4 or x= 2mπ+-π/3 or cos x = cos(π-π/3)
x = nπ/4 or x= 2mπ+-π/3 or cos x = cos 2π/3
x = nπ/4 or x= 2mπ+-π/3 or x = 2kπ+-2π/3
n,m,k are Constant.
Similar questions