∫sin2xcos3xdx
details
Answers
Answer:
cos5x cosx
- ---------- + ------- + c
10 2
Step-by-step explanation:
To find ---->
------------
∫sin2x cos 3x dx
Solution--->
--------------
I= ∫sin2x cos3x dx
1
= ----- ∫2 cos3x sin2x dx
2
we have a formula from trigonometery as follows
2cosA sinB=sin(A+B)-sin(A-B)
apllying this formula here
1
I =-----∫{sin (3x+2x) - sin(3x-2x)}dx
2
1
=------∫ (sin5x-sinx) dx
2
we have a formula ∫sinx dx=-cosx+c
applying it here
1 -cos5x
=----- { ------------- - (-cosx) } + c
2 5
cos5x cosx
=- ------------- + ---------- + c
10 2
Hope it helps u
Thanks
related other formula--->
-----------------------------------
1:2sinA cosB=sin(A+B) + sin(A-B)
2:2cosA cosB=cos(A+B)+cos(A-B)
3:2sinA sinB =cos((A-B)- cos(A+B)
Answer:
Step-by-step explanation:
∫ sin2x cos3x dx in this question following formula will be used
2sinA cosB=sin(A+B)+sin(A-B)
ans- 1/2∫ 2sin2x cos3x dx
=1/2∫ sin(2x+3x)+sin(2x-3x) dx
=1/2∫ sin5x+sin(-x) dx { sin(-θ )= -sinθ }
=1/2∫ sin5x- sinx dx
=1/2∫ sin5x dx -1/2 ∫ sinx dx
=1/10(-cos5x)+1/2cosx (by integration)