Math, asked by radhasharma93, 1 year ago

sin2y+cosxy=k,find dy/dx​

Answers

Answered by rakhithakur
59

Answer:

\frac{dy}{dx} =\frac{ysin(xy)}{sin2y-xsinxy}

Step-by-step explanation:

sin²y + cos xy = k

differentiating both side w.r.t.x.

\frac{d(sin ^{2}+cos xy)}{dx}=\frac{d(k)}{dx}

hence derivative of constant is zero  

\frac{d(sin^{2}y)}{dx} +\frac{d(cos xy)}{dx}=0

calculating derivative of sin²y and cos(xy) sperately

calculating derivative of sin²y

\frac{d(sin^2 y)}{dx}= \frac{d(sin^{2}y)}{dx}  *\frac{dy}{dy}

= \frac{d(sin^{2}y)}{dx} *\frac{dy}{dx}

=2sin^{2-1}x.\frac{d(sin y)}{dy} * \frac{dy}{dx}

==2siny.cosy*\frac{dy}{dx}

calculating derivative of cos(xy)

\frac{d(cos(xy))}{dx}=-sin(xy)*\frac{d}{dx} (xy)

=-sin(xy)*(\frac{d(x)}{dx}.y+\frac{d(y)}{d(x)}.x )

=-sin(xy).(1.y+x\frac{dy}{dx} )

=-sin(xy)(y+x\frac{dy}{dx} )

=-sin(xy).y-sin(xy).x\frac{dy}{dx}

=-ysin(xy)-sin(xy).x\frac{dy}{dx}

now,

\frac{d(sin^{2}y)}{dx}+\frac{d(cos(xy))}{dx}=0

putting values

2siny.cosy.\frac{dy}{dx} +(-ysin(xy)-xsin(xy)\frac{dy}{dx} )=0

2siny.cosy.\frac{dy}{dx}-ysin(xy)-xsin(xy)\frac{dy}{dx}=0

2siny cosy\frac{dy}{dx}-xsin(xy)\frac{dy}{dx}=y sin(xy)

\frac{dy}{dx}(2sinycosy-xsin(xy))=ysin(xy)\\

\frac{dy}{dx}=\frac{ysin(xy)}{2sinycosy-xsinxy}

\frac{dy}{dx}=\frac{ysin(xy)}{sin2y-xsinxy}


rakhithakur: hope it will helpful for you
Similar questions