Math, asked by adeshgurjar231, 11 months ago

sin3(21)+cos3(19)
/sin(21)+cos(19)​

Answers

Answered by akshitsingh0711
0

Answer:

sin3(21)+cos3(19)/ sin(21)+cos(19)

= (sin21 + cos19)(sin2(21)+cos2(19)-sin21cos19)/sin(21)+cos(19)

= sin2(21) + cos2(19) - sin21cos19

...

Answered by mad210219
0

\dfrac{sin^{3} 21 + cos^{3} 19}{sin 21 + cos19} = (1 - sin 21 cos 19)

Step-by-step explanation:

\dfrac{sin^{3} 21 + cos^{3} 19}{sin 21 + cos19}

Now we know the formula of of a^{3} + b^{3} = (a+b)(a^{2} -ab +b^{2})

Thus putting this value in the above we get,

\dfrac{sin^{3} 21 + cos^{3} 19}{sin 21 + cos19}   =   \dfrac{(sin 21 + cos19)(sin^{2} 21 - sin 21 cos 19+ cos^{2} 19)}{sin 21 + cos19}

Crossing out sin 21+ cos 19 in numerator and denominator we get,

(sin^{2} 21 - sin 21 cos 19+ cos^{2} 19)

Now we know,

(sin^{2} x+ cos^{2} x) =1

Therefore putting this value we get

(sin^{2} 21 - sin 21 cos 19+ cos^{2} 19) = (1 - sin 21 cos 19)

Similar questions