_
sin3 A +cos3 A/sin A + cos A
sin3 A - cos3 A/sin A - cos A=2
Answers
Answered by
10
We have to prove that
(sin³A+cos³A/sinA+cosA) + (sin³A-cos³A/sinA-cosA)=2
LHS = (sin³A+cos³A/sinA+cosA) + (sin³A-cos³A/sinA-cosA)
= {(sinA+cosA)(sin²A+cos²A-sinA.cosA)}/(sinA+cosA) + {(sinA-cosA)(sin²A+cos²A+sinA.cosA)}/(sinA-cosA)
= (sin²A+cos² on Brainly.in - https://brainly.in/question/29033
We have to prove that
(sin³A+cos³A/sinA+cosA) + (sin³A-cos³A/sinA-cosA)=2
LHS = (sin³A+cos³A/sinA+cosA) + (sin³A-cos³A/sinA-cosA)
= {(sinA+cosA)(sin²A+cos²A-sinA.cosA)}/(sinA+cosA) + {(sinA-cosA)(sin²A+cos²A+sinA.cosA)}/(sinA-cosA)
= (sin²A+cos²A-sinA.cosA) + (sin²A+cos²A+sinA.cosA)
= 1-sinA.cosA+1+sinA.cosA
= 1+1
= 2 = RHS [pro
Similar questions