sin³+cos³÷sin+cos +sin+cos=1
Attachments:
Answers
Answered by
1
sinθ−cosθ=3/4…(1)
(sinθ−cosθ)2=9/16=>sin2θ+cos2θ−2sinθcosθ=9/16=>
1−2sinθcosθ=9/16=> 2sinθcosθ=1−9/16=>
2sinθcosθ=7/16=>sinθcosθ=7/32...(2)
Now, we set x=sinθ, y=cosθ and we take:
sin3θ+cos3θ=x3+y3=(x+y)(x2−xy+y2)...(3)
Moreover, we have:
(x+y)2=(x2+y2+2xy)=>(x+y)2=1+2xy=>
x+y=sqrt(1+2xy)=>x+y=sqrt(1+7/16)...(4)
Therefore, by (3) and (4), we take:
sin3θ+cos3θ=x3+y3=(x+y)(x2−xy+y2) =
sqrt(1+7/16)(1−xy)…(5)
Now, by (2) we take:
xy=7/32...(6)
Finally, by (5) and (6) we obtain:
sin3θ+cos3θ=sqrt(1+7/16)(1−7/32)=
(25/32)sqrt(23/16)=(25/128)sqrt(23)
Similar questions