Math, asked by salman5672, 6 months ago

Sin3 theta+sin2theta-sintheta=4sin theta cos theta /2 cos3 theta/2

Answers

Answered by MaheswariS
3

\underline{\textsf{To prove:}}

\mathsf{sin3\theta+sin2\theta-sin\theta=4\;sin\theta\;cos\frac{\theta}{2}\;cos\frac{3\theta}{2}}

\underline{\textsf{Solution:}}

\mathsf{Consider,}

\mathsf{sin3\theta+sin2\theta-sin\theta}

\mathsf{Using\;the\;identity}

\boxed{\mathsf{sinC+sinD=2\;sin\left(\dfrac{C+D}{2}\right)\;cos\left(\dfrac{C-D}{2}\right)}}

\boxed{\mathsf{sinA=2\;sin\frac{A}{2}\;cos\frac{A}{2}}}

\mathsf{=2\;sin\left(\dfrac{3\theta+2\theta}{2}\right)\;cos\left(\dfrac{3\theta-2\theta}{2}\right)-2\;sin\dfrac{\theta}{2}\;cos\dfrac{\theta}{2}}

\mathsf{=2\;sin\left(\dfrac{5\theta}{2}\right)\;cos\left(\dfrac{\theta}{2}\right)-2\;sin\dfrac{\theta}{2}\;cos\dfrac{\theta}{2}}

\mathsf{=2\;cos\dfrac{\theta}{2}\left[sin\dfrac{5\theta}{2}-sin\dfrac{\theta}{2}\right]}

\mathsf{Using\;the\;identity,}\;\boxed{\mathsf{sinC-sinD=2\;cos\left(\dfrac{C+D}{2}\right)\;sin\left(\dfrac{C-D}{2}\right)}}

\mathsf{=2\;cos\dfrac{\theta}{2}\left[2\;cos\left(\dfrac{5\theta/2+\theta/2}{2}\right)\;sin\left(\dfrac{5\theta/2-\theta/2}{2}\right)\right]}

\mathsf{=2\;cos\dfrac{\theta}{2}\left[2\;cos\left(\dfrac{6\theta/2}{2}\right)\;sin\left(\dfrac{4\theta/2}{2}\right)\right]}

\mathsf{=2\;cos\dfrac{\theta}{2}\left[2\;cos\left(\dfrac{3\theta}{2}\right)\;sin\theta\right]}

\implies\boxed{\mathsf{sin3\theta+sin2\theta-sin\theta=4\;sin\theta\;cos\frac{\theta}{2}\;cos\frac{3\theta}{2}}}

\underline{\textsf{Find more:}}

msinB = nsin(2A+B) then (m+n) tanA=

(m-n) tan (A+B)

https://brainly.in/question/12600374

If sin theta = n sin (theta + 2 alpha) then prove that tan ( theta + alpha) =1+n/1-n tan

https://brainly.in/question/5603310

Similar questions