Sin30+tan45-cosec60
Cot45+cos 60-sec30
Answers
Answered by
0
given that
\frac{(sin30 + tan45 - cosec60)}{(sec30 + cos60 + cot45)}
\frac{ \frac{1}{2}+1- \frac{2}{ \sqrt{3}} }{ \frac{2}{ \sqrt{3}}+ \frac{1}{2}+1}
\frac{ \sqrt{3}+2 \sqrt{3} - 4 }{4 + \sqrt{3} + 2 \sqrt{3} }
\frac{ 3 \sqrt{3} - 4 }{4 + 3 \sqrt{3} }
Rationalise the denominator
\frac{ 3 \sqrt{3} - 4 }{4 + 3 \sqrt{3} } * \frac{ 3 \sqrt{3} - 4 }{3 \sqrt{3} - 4 }
\frac{(3 \sqrt{3} - 4 )^2}{ (3 \sqrt{3} )^2-(4)^2 }
\frac{27+16-24 \sqrt{3} }{27-16}
\frac{43-24 \sqrt{3} }{11}
Answered by
0
Answer:
(3*sqrt(3) - 4) / sqrt(3)
Step-by-step explanation:
=1/2 + 1 - 2/sqrt(3) + 1 + 1/2 -2/sqrt(3)
=1+1+1 -4/sqrt(3)
=3 - 4/sqrt(3)
= (3*sqrt(3) - 4) / sqrt(3)
Similar questions