sin30 theeta.cos3theeta.sin theeta+cos theeta = 1−sin theeta . cos theeta
please solve guysss plsss....... try not to give spam
Answers
Answer:
use the identity (a^3+b^3)= (a+b)(a^2+b^2-ab)
sin^3A + cos^3A÷(sinA +cos ). + sinA.cosA
(sinA+cosA)(sin^2+cos^2 -sinA.cosA)÷ (sinA + cosA)+ sinA.cosA
or( sinA^2+cosA^2 -sinA.cosA) +sinA.cosA
1-sinA.cosA+sinA.cosA
1
Step-by-step explanation:
Step-by-step explanation:
your answer
REFER THE ATTACHMENT.....
Let theta be equal to x.
sin ( 60°+x)
= sin 60.cos x + cos 60.sinx
=[(√3 cos x) /2 + (1 sin x) /2]
cos (30 - x)
= cos 30.cos x + sin 30.sin x
=[ (√3 cos x) /2 + (1 sin x) /2]
Therefore, sin ( 60 + x) - cos ( 30 - x)
= [(√3 cos x) /2 + (1 sin x) /2] - [(√3 cos x) /2 + (1 sin x) /2]
= 0
sin(780) = sin(780 - 720) = sin(60) = (sqrt3)/2
sind(480) = sin(480 - 360) = sin(120) = sin(60) = (sqrt3)/2
cos(120) = - cos(60) = -1/2
sin(30) = 1/2 Therefore:
sin(780) sin(480) + cos(120) sin(30) =
[(sqrt3)/2][(sqrt3)/2] + [-1/2][1/2] = (3/4) - (1/4) = 2/4 = 1/2
get FINAL ANSWER....[(√3 cos x) /2 + (1 sin x) /2] - [(√3 cos x) /2 + (1 sin x) /2 = 0