Math, asked by Anonymous, 1 month ago

sin30°+tan45°-cosec60° / sec30°+cos60°+cot45°

Answers

Answered by Anonymous
88

 \purple \bullet \footnotesize \tt{ \: sin 30° \:  =   \frac{1}{2}  }

 \purple \bullet \footnotesize \tt{ \: tan45° \:  =   1  }

 \purple \bullet \footnotesize \tt{ \: cosec60°\:  =   \frac{2}{ \sqrt{3} }  }

 \purple \bullet \footnotesize \tt{ \: sec30°\:  =   \frac{2}{ \sqrt{3} }  }

 \purple \bullet \footnotesize \tt{ \: cos 60 °\:  =   \frac{1}{2}  }

 \purple \bullet \footnotesize \tt{ \: cot45° \:  =   1  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \bullet \footnotesize \tt \purple{  \: Solution:-  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \purple\leadsto\tt{ \frac{sin30° \:  + \:  tan45 ° \:  - \:  cosec60°}{sec30 ° \: + \:  cos60° \:  + \:  cot45°} }

 \purple\leadsto\tt{ \frac{ \frac{1}{2}  \:  + \:  1 \:  -   \: \frac{2}{ \sqrt{3} } }{ \frac{2}{ \sqrt{3} }  \:  +  \:   \frac{1}{2} \:   + \:  1} }

 \purple\leadsto\tt{  \frac{ \frac{ \sqrt{3 }   \: +  \: 2 \sqrt{3}  \:  -  \: 4}{ \sqrt{3} } }{ \frac{4  \: +   \: \sqrt{3}  \:  +  \: 2 \sqrt{3} }{ \sqrt{3} }  }  }

 \purple\leadsto\tt{  \frac{ \frac{ 3 \sqrt{3} \:   -  \: 4}{ \sqrt{3} } }{ \frac{3 \sqrt{3}  \:  +  \: 4}{ \sqrt{3} }  }  }

\purple\leadsto \tt{ \frac{3 \sqrt{3}   \:  -  \:  4}{ \sqrt{3} } \times  \frac{ \sqrt{3} }{3 \sqrt{3} \:   +   \: 4 }  }

 \purple\leadsto\tt{ \frac{3 \sqrt{3}   \:  -  \:  4}{3 \sqrt{3} \:   +   \: 4 }  }

 \purple\leadsto\tt{ \frac{3 \sqrt{3}   \:  -  \:  4}{3 \sqrt{3} \:   +   \: 4 }  } \times  \frac{3 \sqrt{3}  \:  - \:  4}{3 \sqrt{3}  \:  -  \: 4}

 \purple\leadsto\tt{ \frac{(3 \sqrt{3}   \:  -  \:  4) ^{2} }{(3 \sqrt{3})^{2}  \:   -  \: (4 )^{2} }  }

 \purple\leadsto\tt{ \frac{(3 \sqrt{3}) ^{2}    \:  - \: 2 \times 3 \sqrt{3}    \times  4    \: +  \:  (4) ^{2} }{27  \:    -  \: 16 }  }

 \purple\leadsto\tt{ \frac{27   \:  -  \: 24 \sqrt{3}   \: +  \:  16}{27  \:    -  \: 16 }  }

 \footnotesize\boxed{\boxed{\purple\leadsto\tt{ \frac{43 \: -  \: 24 \sqrt{3} }{11 }  }}}

Answered by IIMASTERII
3

\Huge{\texttt{{{\color{Magenta}{⛄A}}{\red{N}}{\purple{S}}{\pink{W}}{\blue{E}}{\green{R}}{\red{♡}}{\purple{࿐⛄}}{\color{pink}{:}}}}}

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

✠We know that:-

 \tt  \purple\longrightarrow{Sin30° =  \frac{1}{2} }

 \tt \purple \longrightarrow{Tan45° = 1}

 \tt \purple \longrightarrow{Cosec60° =  \frac{2}{ \sqrt{3} } }

 \tt \purple \longrightarrow{Sec30° = \frac{2}{ \sqrt{3} }}

 \tt \purple \longrightarrow{Cos60° =  \frac{1}{2} }

 \tt \purple \longrightarrow{Cot45° = 1}

✠Given us,

 \boxed{ \tt{ \frac{Sin30° + Tan45° - Cosec60°}{Sec30° + Cos60° + Cot45°}}}

 \tt \orange{ \leadsto \frac{1}{2}  +  \frac{ \frac{1 - 2}{ \sqrt{3} } }{  \frac{2}{ \sqrt{3} }  } +  \frac{1}{2} + 1 }

 \tt \orange{ \leadsto \frac{3}{2}   -  \frac{ \frac{ 2}{ \sqrt{3} } }{  \frac{2}{ \sqrt{3} }  } +  \frac{3}{2} }

 \tt  \orange {\leadsto 3 \sqrt{3} -  \frac{4}{4}  + 3 \sqrt{3}  }

 \tt \orange{ \leadsto3 \sqrt{3}  -  \frac{4}{4} +  {3 \sqrt{3}  \times  3\sqrt{3} -  \frac{4}{3 \sqrt{3}  }    - 4 }}

\tt \orange{ \leadsto 27 + 16 -  \frac{24 \sqrt{3}}{27}   - 16}

 \huge \boxed{ \tt { 43 -  \frac{24 \sqrt{3} }{11}}}

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

\huge\red{\boxed{\orange{\mathcal{{{\fcolorbox{red}{i}{{\red{@Master}}}}}}}}}

Similar questions