Math, asked by drrspandana3709, 1 year ago

{(sin34cos236)-(sin56sin124)}/{(cos28cos88+cos178sin208)}=?

Answers

Answered by Agastya0606
1

Given: {(sin34cos236)-(sin56sin124)}/{(cos28cos88+cos178sin208)}

To find: The value of the given expression.

Solution:

  • Now the expression given is:

               {(sin34cos236)-(sin56sin124)}/{(cos28cos88+cos178sin208)}

  • Lets consider numerator, we have:

               { ( sin34 x cos236 ) - ( sin56 x sin124 ) }

  • Now we know the formula:

              cos (270 - x) = - sin (x)

               sin (90 + x) = cos (x)

  • Applying this, we get:

               { ( sin34 x cos(270 - 236) - sin56 x sin(90 + 34) }

               { ( sin34 x -sin(34) - sin56 x cos(34) }

               { ( sin34 x -cos 56 - sin56 x cos(34) }

  • In denominator, we have:

               {(cos28cos88 + cos178sin208)}

  • Now we have

               sin (180 + x) = -sinx

               cos 180 - x) = -cosx

               cos(90-2) = cosx

  • Applying it, we get:

               {(cos28 x sin 2 + cos2 x sin28)}

  • Now taking them together, we get:

               { ( sin34 x -cos 56 - sin56 x cos(34) } / {(cos28 x sin 2 + cos2 x sin28)}

  • Applying the ormula, we have:

               sin (a+b) = sin a cos b + cos a sin b.

               { ( sin34 x -cos 56 - sin56 x cos(34) } / {sin (28+2)}

               - sin(34 + 56) /  {sin (28+2)}

               - sin 90 / sin 30

              -1 / 1/2

               -2

Answer:

So the value of the given expression is -2.

Similar questions