{(sin34cos236)-(sin56sin124)}/{(cos28cos88+cos178sin208)}=?
Answers
Given: {(sin34cos236)-(sin56sin124)}/{(cos28cos88+cos178sin208)}
To find: The value of the given expression.
Solution:
- Now the expression given is:
{(sin34cos236)-(sin56sin124)}/{(cos28cos88+cos178sin208)}
- Lets consider numerator, we have:
{ ( sin34 x cos236 ) - ( sin56 x sin124 ) }
- Now we know the formula:
cos (270 - x) = - sin (x)
sin (90 + x) = cos (x)
- Applying this, we get:
{ ( sin34 x cos(270 - 236) - sin56 x sin(90 + 34) }
{ ( sin34 x -sin(34) - sin56 x cos(34) }
{ ( sin34 x -cos 56 - sin56 x cos(34) }
- In denominator, we have:
{(cos28cos88 + cos178sin208)}
- Now we have
sin (180 + x) = -sinx
cos 180 - x) = -cosx
cos(90-2) = cosx
- Applying it, we get:
{(cos28 x sin 2 + cos2 x sin28)}
- Now taking them together, we get:
{ ( sin34 x -cos 56 - sin56 x cos(34) } / {(cos28 x sin 2 + cos2 x sin28)}
- Applying the ormula, we have:
sin (a+b) = sin a cos b + cos a sin b.
{ ( sin34 x -cos 56 - sin56 x cos(34) } / {sin (28+2)}
- sin(34 + 56) / {sin (28+2)}
- sin 90 / sin 30
-1 / 1/2
-2
Answer:
So the value of the given expression is -2.