sin3A/sinA+cos3A/cosA=4cos2A
Answers
Step-by-step explanation:
Given :-
(Sin 3A / Sin A) + (Cos 3A / Cos A )
Required To Prove:-
Prove that (Sin 3A/Sin A)+(Cos 3A/Cos A )
= 4 Cos 2A
Solution:-
On taking LHS:
(Sin 3A / Sin A) + (Cos 3A / Cos A )
We know that
Sin 3A = 3 Sin A - 4 Sin³ A
Cos 3A = 4 Cos³ A - 3 Cos A
Now
(Sin 3A / Sin A)
=> (3 Sin A - 4 Sin³ A )/ Sin A
=> Sin A ( 3 - 4 Sin² A) / Sin A
=> 3 - 4 Sin² A
Sin 3 A / Sin A = 3 - 4 Sin² A --------------(1)
and
(Cos 3A / Cos A )
=> (4 Cos³ A - 3 Cos A) / Cos A
=> Cos A ( 4 Cos² A - 3) / Cos A
=> 4 Cos² A - 3
Cos 3 A / Cos A = 4 Cos² A - 3 ----------(2)
On adding (1)&(2)
=> (Sin 3A / Sin A) + (Cos 3A / Cos A )
=> ( 3 - 4 Sin² A ) + ( 4 Cos² A - 3 )
=> 3 - 4 Sin² A + 4 Cos² A - 3
=> -4 Sin² A + 4 Cos² A
=> 4 Cos² A - 4 Sin² A
=> 4 ( Cos² A - Sin² A )
We know that Cos² A - Sin² A = Cos 2A
=> 4 Cos 2A
=> RHS
=> LHS = RHS
Hence, Proved.
Answer:-
(Sin 3A / Sin A) + (Cos 3A / Cos A )
= 4 Cos 2A
Used formulae:-
→ Sin 3A = 3 Sin A - 4 Sin³ A
→ Cos 3A = 4 Cos³ A - 3 Cos A
→ Cos² A - Sin² A = Cos 2A