Math, asked by yogeshjatav13, 1 year ago

(Sin3A+sinA)SinAi +(cos3A-cos) cosA=0

Answers

Answered by Deepsbhargav
20
=> (sin3A + sinA)sinA + (Cos3A - cosA)CosA = 0

=> sin3A.sinA + sin²A + cos3A.cosA - cos²A = 0

=> sin3A.sinA + Cos3A.CosA -(cos²A-sin²A) = 0

____________________

USIND TRIGONOMETRIC IDENTITY :-

=> cos(a-b) = sina.sinb + cosa.cosb

=> cos²a - sin²a = cos2a
____________________

THEN,

=> cos(3A-A) - cos2A = 0

=> cos2A - cos2A = 0

=> 0 = 0
________[PROVED]

====================================

_-_-_-_✌☆BE \: \: \: \: BRAINLY☆✌_-_-_-_

yogeshjatav13: thnxx
yogeshjatav13: Okay
Deepsbhargav: @yogesh .. Ise post Karo solve ho jayega
Deepsbhargav: @riddhi theku
yogeshjatav13: @deepsbhargav solve ho gya sir
Deepsbhargav: OK ✌✌✌
yogeshjatav13: yes
Answered by DevilDoll12
16
Heya!!
---------

-----------------------------------------------------------------------------------------------------
➡Trigonometry ⬅
-----------------------------------------------------------------------------------------------------

 =  > (sin \: 3a + sin \: a \: )sin \: a \:  + (cos \: 3a - cos \: a)cos \: a = 0 \\  \\  =  >  > using \: identity \: ... \\  \\  |1| .sin \: 3a = 3sin \: a \:  - 4sin {}^{3} a \\  \\  |2| .cos \: 3a = 4cos {}^{3} a - 3cos \: a \:  \\  \\  =  >  > we \: have \:  \\  \\ (3 \: sin \: a \:  - 4sin {}^{3} a + sin \: a \: )sin \: a \:  + (4cos {}^{3} a - 3cos \: a \:  -  \: cos \: a \: )cos \: a \:  \\   \\  \\  = 4 \: sin {}^{2} a(1 - sin {}^{2} a) - 4cos {}^{2} a(1 - cos {}^{2} a) \\  \\  = 4sin {}^{2} a \:  \: cos {}^{2} a - 4 \: cos {}^{2} a \:  \: sin {}^{2} a \\  \\  = 0 = rhs
-----------------------------------------------------------------------------------------------------

Deepsbhargav: 2nd method.. wow.. supb.. xD... clap.....
DevilDoll12: hehe...!! theku❤
Similar questions