Math, asked by bheemanianudeep, 3 months ago

sin³theta+sin3 theta/cos³ theta-cos3 theta​

Attachments:

Answers

Answered by nightread
2

➼ Answer ➼

\frac{sin^{3}\theta+sin3\theta}{cos^{3}\theta-cos3\theta}

=>\frac{sin^{3}\theta+3sin\theta-4sin^{3}\theta}{cos^{3}\theta-4cos^{3}\theta+3cos\theta}

=>\frac{-3sin^{3}\theta+3sin\theta}{-3cos^{3}\theta+3cos\theta}

=>\frac{-3}{-3}* [\frac{sin\theta}{cos\theta}]*[\frac{sin^{2}\theta-1}{cos^{2}\theta-1} ]

=>tan\theta*[\frac{-cos^{2}\theta}{-sin^{2}\theta} ]

=>tan\theta*[\frac{cos^{2}\theta}{sin^{2}\theta} ]

=>tan\theta*[\frac{1}{tan^{2}\theta} ]

=>\frac{tan\theta}{tan^{2}\theta}

=>\frac{1}{tan\theta}

=>cot\theta

Hence,

The value of \frac{sin^{3}\theta+sin3\theta}{cos^{3}\theta-cos3\theta} equals to cot\theta.

Formulas for thrice of Angles :-

  • sin3\theta = 3sin\theta -4sin^{3}\theta
  • cos3\theta=4cos^{3}\theta-3cos\theta
  • tan3\theta=[\frac{3tan\theta-tan^{3}\theta}{1-3tan^{2}\theta} ]

☆ Hope it Helps ☆

@NightRead

Similar questions