Math, asked by manjunathmanju2873, 4 months ago

sin3x=3sinx-4sincubex prove RHS=LHS​

Answers

Answered by jainika50
1

Answer:

x = 30. LHS : - sin3(30) = sin90 = 1. RHS : - 3sin(30) - 4{sin3(30)}^2 = 3 × 1/2 - 4(sin90)^2 = 3/2 - 4 = -5/2. LHS =/= RHS .

Answered by bathulasathwikreddy9
0

Answer:

Since the angle sum formula of sine is:

sin

(

α

+

β

)

=

sin

α

cos

β

+

cos

α

sin

β

,

and the double angle formula of cosine:

cos

(

2

α

)

=

cos

2

α

sin

2

α

=

2

cos

2

α

1

=

1

2

sin

2

α

then:

sin

(

3

x

)

=

sin

(

2

x

+

x

)

=

sin

(

2

x

)

cos

x

+

cos

(

2

x

)

sin

x

=

=

(

2

sin

x

cos

x

)

cos

x

+

(

1

2

sin

2

x

)

sin

x

=

=

2

sin

x

cos

2

x

+

sin

x

2

sin

3

x

=

=

2

sin

x

(

1

sin

2

x

)

+

sin

x

2

sin

3

x

=

=

2

sin

x

2

sin

3

x

+

sin

x

2

sin

3

x

=

=

3

sin

x

4

sin

3

x

Similar questions