sin³x+cos³x/sin²x. cos²x
Answers
Step-by-step explanation:
Determine partial fractions
(sin²x*cos²x) / (sin³x + cos³x) = (-3cos(x)^4 + 6 sin²(x) cos²(x) + 2cos²(x) - 3 sin(x)^4 + 2sin²(x)^2 + 1)/[6(cos(x)+sin(x)) (cos²(x)-2sin(x)cos(x) + sin²(x)+1)] (only need to know that cos²(x) = 1-sin²(x) for this)
= (1 / ( sin(x) + cos(x) ) +4(sin(x)+cos(x))/((cos(x)-sin(x))²+1)- 3sin(x)-3cos(x))/6
Step two:
Integrate partial fractions:
∫1 / ( sin(x) + cos(x) ) dx = √2 / 2 [ ln(1+ ( tan(x/2)-1) / √2) - ln (1-( tan(x/2)-1) / √2) ]
∫ 4(sin(x)+cos(x))/((cos(x)-sin(x))²+1) dx = -4 * arc tan ( cos(x)-sin(x) )
∫ -3sin(x)-3cos(x) dx = 3cos(x)-3sin(x)
Step three:
Determine the anti-derivative:
1/6 ( -4 arc tan ( cos(x)-sin(x) ) + √2/ 2 [ ln ( 1+ ( tan(x/2)-1) / √2) - ln ( 1 - ( tan(x/2)-1) / √2) ] + 3 cos(x) – 3 sin(x) )
Step four:
Evaluate the integral at the interval boundaries:
π/4
∫ (sin²x*cos²x) / (sin³x + cos³x) dx =
0
= (π-3+√2/2 [ ln(1+1/√2) - ln(1-1/√2) ] + √2/2 ln ( 1+ ( tan(π/8)-1) / √2 ) - ln ( 1 - ( tan(π/8)-1) / √2 ) )/6