Math, asked by Yakeshraja, 1 year ago

(sin3x-cos3x/sinx+cosx)+1​

Answers

Answered by MaheswariS
4

\textbf{To find:}

\text{The value of $(\dfrac{sin3x-cos3x}{sinx+cosx})+1$}

\textbf{Solution:}

\text{Consider,}

\dfrac{sin3x-cos3x}{sinx+cosx}+1

\text{Using the identity,}

\boxed{\bf\,sin3A=3\,sinA-4\,sin^3A}

\boxed{\bf\,cos3A=4\,cos^3A-3\,cosA}

=\dfrac{(3\,sinx-4\,sin^3x)-(4\,cos^3x-3\,cosx)}{sinx+cosx}+1

=\dfrac{3(sinx+cosx)-4(sin^3x+cos^3x)}{sinx+cosx}+1

=\dfrac{3(sinx+cosx)-4(sinx+cosx)(sin^2x-sinx\,cosx+cos^2x)}{sinx+cosx}+1

=\dfrac{3(sinx+cosx)-4(sinx+cosx)(1-sinx\,cosx)}{sinx+cosx}+1

=\dfrac{(sinx+cosx)(3-4(1-sinx\,cosx))}{sinx+cosx}+1

=3-4(1-sinx\,cosx)+1

=3-4+4\,sinx\,cosx+1

=-1+4\,sinx\,cosx+1

=4\,sinx\,cosx

=2(2\,sinx\,cosx)

=2\,sin2x

\textbf{Answer:}

\boxed{\bf\,(\dfrac{sin3x-cos3x}{sinx+cosx})+1=2\,sin2x}

Find more:

If cos2x-cosx= sin4x - sinx(

where tan doesnot equal to 1) find value of cos3x - sin3x

https://brainly.in/question/19348427

Similar questions