Math, asked by Anonymous, 5 months ago

∫ sin³x cos⁴x dx
evaluate..​

Answers

Answered by Asterinn
9

 \longrightarrow  \displaystyle \int  \sf{sin}^{3} x \:  \:  {cos}^{4} x \: dx \\  \\ \longrightarrow  \displaystyle \int  \sf{sin}^{2} x   \:  \:sin \:x  \:  \:   {cos}^{4} x \:  \: dx\\  \\ \longrightarrow  \displaystyle \int  \sf(1 - {cos}^{2}x)    \:  \:   {cos}^{4} x \:  \: sin \:x  \:  \: dx \\   \\  \\ \sf  let \: \:  cos \: x \:  = t \\   \sf- sin \: x \: dx \:  = dt  \\ \boxed{  \sf sin \: x \: dx \:  = -  dt} \\  \\ \longrightarrow  \displaystyle  - \int  \sf(1 - {t}^{2})    \:   {t}^{4}   \: dt  \\  \\ \longrightarrow  \displaystyle  - \int  \sf ({t}^{4} - {t}^{6} )  \:     \: dt \\  \\ \longrightarrow  \displaystyle  - \int  \sf {t}^{4} dt + \displaystyle  \int  \sf{t}^{6}  \:     \: dt \\  \\ \longrightarrow  \displaystyle  -  \sf  \frac{{t}^{5}}{5}  +   \sf \frac{{t}^{7} }{7}   + c \\  \\   \sf now, \: put \: t = cos \: x \\  \\ \longrightarrow  \displaystyle  -  \sf  \frac{{cos}^{5}x}{5}  +   \sf \frac{{cos}^{7} x}{7}   + c

Similar questions